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Conservation laws for second-order invariant variational 
problems 
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Abstract. In the literature, a symmetry requirement in the mixed, second partials appearing 
in the Lagrangian is needed before conservation laws for second-order variational problems 
can be obtained. In this paper this assumption is removed and an example of a modified, 
linear Korteweg-de Vries equation is analysed. 

1. Introduction 

In studying compression waves in non-homogeneous media, it was recefitly noticed 
by one of the authors (JBB) that the second-order variational functional 

J (u(x ,  t ) )  = 11 (4S2u,uX + f u : - f u : , )  dt  dx, 

whose Euler equation is a modified, linear Korteweg-de Vries equation 

did not lead to a conservation law (due to time invariance) as predicted by the theory 
presented in the papers by Blakeslee and Logan (1976, 1977), Logan and Blakeslee 
(1975) and in the monograph by Logan (1977). Rather, it was necessary to symmetrise 
the Lagrangian in the term involving the mixed second partial by replacing U:, by 
fu;, +$U:, before a conservation law could be obtained. On careful examination it was 
found that the results in the papers by Blakeslee and Logan depend upon the assumption 
that 

i.e. the Lagrangian L =  L( t ,  x, U, uI, U,, u , ~ ,  U,, U,,, u x I )  is symmetric in the mixed 
second partials. 

The purpose of this paper is two-fold: (i)  to point out that this symmetry assumption 
is required in the papers by Blakeslee and Logan, and (ii) to state and prove a general 
result which does not require symmetry in the Lagrangian and which gives conservation 
laws due to invariance of the variational problem under local, Lie groups of transfor- 
mations. This result follows from a straightforward proof of the classical Noether 
theorem (Noether 1918). 
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2. The general result 

For simplicity, we study the variational functional 

(2.1) 
D 

where U is four times continuously differentiable in the domain D in t't'-space. 
Subscripts denote partial differentiation, i.e. 

U' = au/at ' ,  uI2 = a2u/at2at1, etc. 

Even though u , ~ =  ul lr  it is not necessary that aL/au,' equal aL/auZl.  The Eulsr 
equation corresponding to (2.1) is 

aL a a' 
au at" U- ataats E(L)=---L +- Lum, = 0, 

where Lua = aL/au,, LupB = aL/auaB, with sums being performed over repeated indices. 
It presents no difficulties to extend (2.1) to several independent variables t ' ,  . . . , t"' 
and/or several dependent functions U', . . . , U". 

We further consider a one-parameter family of transformations 

f ' = f a + E T n ( t ' ,  f 2 ,  U ) + O ( E )  

a = U + E t ( t ' ,  t2, U )  + O ( E ) ,  

where a = 1, 2, E is a real parameter, and O(E)  denotes terms which go to zero faster 
than E. The functions T= and 6 are assumed to be twice continuously differentiable. 
Again, the analysis can easily be extended to transformations involving several para- 
meters E ' ,  . . . , 

Following Logan (1977), we say that J ( u )  defined by (2.1) is invariant under (2.3) 
if, and only if, 

(see Logan 1977). 

[ L( if, f2, ti, z, aa 3,. aa . . ) det (;;)]I -p = O  
as E = O  

(2.4) 

for all functions U( t ' ,  t') which are four times continuously differentiable. 
The following theorem is proved by expanding (2.4). It is given in Logan and 

Blakeslee (1975) and Logan (1977) and does not depend upon symmetry in the 
Lagrangian. 

Theorem. If J ( u )  defined by (2.1) is invariant under the one-parameter family of 
transformations (2.3), then 

d d C  d2 C - (L7") + LUC + Lua 7 + Lum, ~ - 
dt" d t  dt" dtP-O (2.5) 

where 

C = 6 -  u,r". 

Equation (2.5), is an invariance identity relating the Lagrangian L and the transforma- 
tion generators r" and 6. 
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We can now obtain a conservation law from ( 2 . 5 ) ;  we assume nothing concerning 
symmetry in the Lagrangian. First note that 

and 

When (2.6) and (2.7) are substituted into (2 .5 ) ,  one obtains 

where E ( L )  is the Euler expression given by (2.2). (It is now easy to see that if L is 
symmetric in the mixed partials then the second term on the LHS of (2.8) vanishes and 
the equation by Logan (1977) is obtained.) As (2.8) stands, when E (  L )  = 0 we do  not 
obtain an equation in conservation form due to the presence of the second term. 
However, we note that 

and the second term on the RHS of (2.9) vanishes because of the equality of mixed 
partials since C depends only on TO, 6, and U, all of which possess a high degree of 
smoothness. Therefore, when E ( L )  = 0, (2.8) can be written 

(2.10) 

which gives the appropriate conservation law due to invariance of (2.1) under (2.3). 

3. Examples and remarks 

The variational problem (1 . l )  is obviously invariant under the one-parameter family 
I =  t + E ,  f = x, tj = U of time translations. Here, with T I  = 1, T~ = 6 = 0, it is easy to 
show that (2.10) gives the conservation law 

a 1 2 2  a 
- ( ~ u : + ~ u : x + u , u , , , ) + - ( ~ 6  U , - U , , U , , ) = O .  
a t  ax 

It is interesting to note that the term U:, in the Lagrangian in (1.1) can be partitioned 
in infinitely many ways giving a class of Lagrangians 

(3.1) L=' 26 7. ulu, ++U:- (a/4)u2,, -[(2 - a)/4]u?,, 
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where a is a real parameter, all of which lead to the same Euler equation. But now 
infinitely many conservation laws result, one for each a. They are 

Choosing different values of a has the effect of shifting terms back and forth from the 
‘density’ term to the ‘flux’ term in (3.2). In the second-order case, therefore, there is 
not a unique Lagrangian or conservation law associated with a single governing 
equation of motion. Physical arguments may be required to select an appropriate value 
of the parameter a in (3.1). 
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